Exercise 17

When a cold drink is taken from a refrigerator, its temperature is $5^{\circ} \mathrm{C}$. After 25 minutes in a $20^{\circ} \mathrm{C}$ room its temperature has increased to $10^{\circ} \mathrm{C}$.
(a) What is the temperature of the drink after 50 minutes?
(b) When will its temperature be $15^{\circ} \mathrm{C}$?

Solution

Assume that the rate of decrease of the corpse's temperature is proportional to the difference between the corpse's temperature and the surrounding temperature T_{s}.

$$
\frac{d T}{d t} \propto-\left(T-T_{s}\right)
$$

The minus sign is included so that when the surroundings are cooler (hotter) than the corpse, $d T / d t$ is negative (positive). Change this proportionality to an equation by introducing a positive constant k.

$$
\frac{d T}{d t}=-k\left(T-T_{s}\right)
$$

To solve this differential equation for T, make the substitution $y=T-T_{s}$.

$$
\frac{d T}{d t}=-k y
$$

Differentiate both sides of the substitution with respect to t to write the derivative in terms of y : $\frac{d y}{d t}=\frac{d}{d t}\left(T-T_{s}\right)=\frac{d T}{d t}$.

$$
\frac{d y}{d t}=-k y
$$

Divide both sides by y.

$$
\frac{1}{y} \frac{d y}{d t}=-k
$$

Rewrite the left side by using the chain rule.

$$
\frac{d}{d t} \ln y=-k
$$

The function you take a derivative of to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln y=-k t+C
$$

Exponentiate both sides to get y.

$$
\begin{aligned}
e^{\ln y} & =e^{-k t+C} \\
y & =e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant A for e^{C}.

$$
y(t)=A e^{-k t}
$$

Now that the differential equation has been solved, change back to the original variable T, the corpse's temperature.

$$
T-T_{s}=A e^{-k t}
$$

As a result,

$$
T(t)=T_{s}+A e^{-k t} .
$$

Since the room's temperature is $20^{\circ} \mathrm{C}, T_{s}=20$.

$$
T(t)=20+A e^{-k t}
$$

Use the fact that the cup's initial temperature is $5^{\circ} \mathrm{C}$.

$$
5=20+A e^{-k(0)} \quad \rightarrow \quad A=5-20=-15
$$

Consequently,

$$
T(t)=20-15 e^{-k t} .
$$

In order to determine k, use the fact that after 25 minutes the drink's temperature increases to $10^{\circ} \mathrm{C}$.

$$
\begin{gathered}
10=20-15 e^{-k(25)} \\
-10=-15 e^{-25 k} \\
\frac{-10}{-15}=e^{-25 k} \\
\frac{2}{3}=e^{-25 k} \\
\ln \frac{2}{3}=\ln e^{-25 k} \\
\ln \frac{2}{3}=(-25 k) \ln e \\
k=-\frac{\ln \frac{2}{3}}{25} \approx 0.0162186 \text { minute }^{-1}
\end{gathered}
$$

Therefore, the drink's temperature after t minutes is

$$
\begin{aligned}
T(t) & =20-15 e^{-k t} \\
& =20-15 e^{-\left(-\frac{\ln \frac{2}{3}}{25}\right) t} \\
& =20-15 e^{\ln \left(\frac{2}{3}\right)^{t / 25}} \\
& =20-15\left(\frac{2}{3}\right)^{t / 25}
\end{aligned}
$$

Part (a)

Set $t=50$ to get the drink's temperature after 50 minutes have passed.

$$
T(50)=20-15\left(\frac{2}{3}\right)^{50 / 25}=20-15\left(\frac{2}{3}\right)^{2}=\frac{40}{3} \approx 13.3333
$$

The drink's temperature after 50 minutes is about $13.3^{\circ} \mathrm{C}$.

Part (b)

To find when its temperature is $15^{\circ} \mathrm{C}$, set $T(t)=15$ and solve the equation for t.

$$
\begin{gathered}
T(t)=15 \\
20-15\left(\frac{2}{3}\right)^{t / 25}=15 \\
-15\left(\frac{2}{3}\right)^{t / 25}=-5 \\
\left(\frac{2}{3}\right)^{t / 25}=\frac{1}{3} \\
\ln \left(\frac{2}{3}\right)^{t / 25}=\ln \frac{1}{3} \\
\left(\frac{t}{25}\right) \ln \left(\frac{2}{3}\right)=\ln \frac{1}{3} \\
t=\frac{25 \ln \frac{1}{3}}{\ln \frac{2}{3}} \approx 67.7378 \text { minutes }
\end{gathered}
$$

